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ABSTRACT
Log-structured merge (LSM) trees have emerged as one of the most
commonly used disk-based data structures in modern data systems.
LSM-trees employ out-of-place ingestion to support high through-
put for writes, while their immutable file structure allows for good
utilization of disk space. Thus, the log-structured paradigm has
been widely adopted in state-of-the-art NoSQL, relational, spatial,
and time-series data systems. However, despite their popularity,
there is a lack of pedagogical textbook-like material on LSM designs.
The goal of this tutorial is to present the fundamental principles of
the LSM paradigm along with a digest of optimizations and new
designs proposed in recent research and adopted by modern LSM
engines. This will serve as introductory material for non-experts,
and as a roadmap to cutting-edge LSM results for the LSM-aware
researchers and practitioners.

Toward this, we first discuss in detail the basic operations (inserts,
updates, deletes, point and range queries), their access patterns, and
their paths through the LSM data structure. We then dive into the
details of recent research on optimizing each of those operations.
We first discuss techniques and designs that optimize data ingestion
in LSM-trees and the performance tradeoff constructed by writes
and reads for the LSM engines. Finally, we present the rich design
space of the log-structured paradigm and outline how to navigate
it and tune LSM-based systems. We conclude with a discussion on
open challenges on LSM systems. This will be a 1.5-hour tutorial.
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1 INTRODUCTION
DrivingApplicationTrends.Modern data store designs are driven
by three fundamental trends. (A) Modern applications are storing in-
creasinglymore data, which is further fueled by the decreasing price
of storage and memory. (B) As a result, many data stores perform
more insertions than read queries in their lifetime [115]. (C) The
global move to cloud-based data management further supports
immutability-based systems [51]. Putting these trends together, a
large number of applications opt to employ at their storage layer
log-structured merge-trees, a highly ingestion-optimized design.
Log-Structured Merge-Trees (LSM-Trees). LSM-Trees are de-
signed to support high ingestion throughput for disk-based systems
[93]; however, this comes at the cost of lower read performance or
additional memory/storage footprint [13, 14]. To address this, the
LSM paradigm has been heavily optimized since its inception. The
founding idea of LSM-trees is to batch writes in memory and
write on disk only large chunks of sorted data in order to achieve
high write throughput. The files on disk are never edited in place,
rather, updates and deletes are applied lazily on the immutable
files that allows the files to be compact. Finally, in order to of-
fer competitive read performance, the design is augmented with
auxiliary in-memory data structures for each immutable file.
LSM-Trees are Everywhere. The superior ingestion performance
and the highly tunable nature of the LSM paradigm, has turned
LSMs as one of the most popular storage paradigms for modern data
stores including state-of-the-art relational and NoSQL data stores,
as well as other systems like spatial [65, 86, 123] and time-series data
systems [60, 67]. For example, LevelDB [49] and BigTable [25] at
Google, RocksDB [44] at Facebook, X-Engine [53] at Alibaba, Volde-
mort [77] at LinkedIn, Dynamo [36] at Amazon, AsterixDB [7]
Cassandra [11], HBase [10], and Accumulo [9] at Apache, and
bLSM [115] and cLSM [48] at Yahoo, all rely on LSM-trees.
A Rich Design Space. A closer look into the internals of LSM-
engines reveal numerous design decisions in the works. These deci-
sions determine the structure of a tree (data layout), the periodicity
of merges/compactions, the granularity of merges/compactions,
distribution of main memory between the buffer and other auxil-
iary in-memory components, the decision of which auxiliary data
structures to use, and even when to physically delete invalidated
data objects. Such design choices influence the performance of LSM-
engines along several axes; but, are often abstracted from the user
due to their complexity and the design-intricacies involved.
Goal of the Tutorial. In this tutorial, we open the black-box of
LSM-based systems, and we present each design decision in detail.
This deep understanding of the internals of LSM-trees will allow
young graduate students, seasoned researchers, and practitioners
to better understand how to build and tune an LSM system, and
enable them to get an overview of numerous optimizations that
have been proposed and adopted in state-of-the-art LSM systems.
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Tutorial Overview
We will provide a 1.5-hour tutorial, broken down into 3 modules.
Module I: LSM Basics. (25 mins) The first module provides the
necessary background on LSM-trees along with an account of the
optimization techniques adopted in state-of-the-art LSM-engines
to facilitate efficient query processing.
(i) Basic structure and operating principles (5 mins). Outline the in-

memory and disk-based components of LSM-based data stores
and discuss their operating principles [31, 39, 83, 93, 113].

(ii) LSM operations (10 mins). Present the workflows for the internal
operations (flush and compaction) [39, 83, 111, 113], and the
external operations (put, get, scan, and delete) [32, 33, 83, 93, 109].

(iii) Point and range query optimizations (10 mins). Outline the differ-
ent optimization techniques used in LSM-engines to facilitate
efficient lookups [31, 32, 35, 37, 76, 84, 131, 132].

Module II: Optimizing Ingestion. (45 mins) The second module
presents an account of optimizations adopted across state-of-the-art
LSM-engines to improve the overall ingestion performance.
(i) In-memory optimizations (5 mins). Summarize the modifications

made to the in-memory LSM-component in order to facilitate
faster ingestion [11, 24, 43, 44, 49, 53, 114].

(ii) Disk data layout optimizations (15 mins). Present the disk data
layout optimization techniques, including hybrid data layouts [26,
33–35, 56, 102, 127], separating keys from values [30, 56, 78], and
partitioning the key space [54, 81, 98].

(iii) Optimizing compactions (10 mins). Discuss different compaction
design choices (how many and which data blocks to compact),
and their impact on ingestion [6, 7, 19, 38, 71, 111, 113].

(iv) Compaction design space (10 mins). Present the LSM compaction
design space and provide key insights on the performance im-
plications of compactions [95, 111, 113, 129, 130, 133].

(v) Enabling parallelism (5 mins). Present the techniques that ex-
ploit thread-level and device-level parallelism to improve inges-
tion [28, 43, 61, 70, 74, 75, 107, 121, 122, 124, 134, 135].

Module III: Tuning and Navigating the LSM Design Space.
(20 mins) In the final module, we present an account of research on
tunability and navigability of the LSM design space for ensuring
optimal design choices for diverse workloads.
(i) Performance space (5 mins). Outline the performance space of

LSM-engines along with the inherent multi-way tradeoff be-
tween the read, write, and delete costs, the memory footprint,
and resource utilization [13, 14, 23, 32, 38, 112].

(ii) Navigating the LSM design space (5 mins). Outline techniques
that navigate the read-write tradeoff curve based on workload
composition [32, 34, 57–59, 79, 82].

(iii) Robust LSM tunings (5 mins). Discuss techniques for robust
LSM tunings that can offer predictable performance in case
of workload-shifts [55, 81].

(iv) Privacy through timely data deletion (5 mins). Present insights on
designing privacy-aware LSM-engines that protects data privacy
through timely persistent data deletion [85, 101, 112].

(v) Finally, conclude with a discussion on the opportunities and
open challenges in LSM research.

Output. The expected outcome of this tutorial are as follows.
• Understanding of the log-structured merge (LSM) paradigm and
its operating principles.

• Understanding the tradeoff between reads, writes, and memory,
and their implications on performance of an LSM-engine.

• Insights about the LSMwrite-path, the data layout re-organization
policies, and the optimizations adopted to optimize writes.

• Insights about the point and range read-paths and the role of
auxiliary in-memory data structures in optimizing reads.

• Appreciation for the different LSM tuning knobs and construc-
tion of the LSM design space from the tuning knobs, along with
intuitions about how to navigate this design space subject to
workload changes and performance requirements.

• Exposure to open research questions on the LSM paradigm.
To our knowledge, this is the first tutorial that (i) explores the
log-structured merge paradigm to (ii) construct and analyze the
LSM design space and (iii) provides useful insights about LSM
tunings to optimize performance. There is also a lack of textbook
materials/supplements that discuss the LSM paradigm. We believe,
this tutorial will benefit researchers and practitioners to better
understand the operating principles and performance tradeoffs
associated with the LSM paradigm, and thus, help make informed
decisions to extract near-optimal performance from LSM engines.

2 TUTORIAL NARRATIVE
2.1 Module I: LSM Basics
LSMs as Index Structure. The LSM paradigm was introduced by
O’Neil et al. as a low-cost disk-based index data structure to sustain
high ingestion rates over an extended period of time [93]. However,
commercial adoption of LSM-trees for indexing began after nearly
a decade with Google’s Bigtable [25]. The resurgence of LSM-trees
can be attributed to the birth of big data-centric technologies, such
as NoSQL systems [44, 73, 90, 92, 116], cloud computing [8, 29, 46,
50, 62], mobile computing [52, 96], and the Internet of things [63, 68,
110]. With an ever-growing data volume, in need for fast ingestion
and analysis, LSM-trees offered multi-faceted benefits over existing
index structures, and thus, were adopted quickly as a storage layer
solution for many NoSQL [6, 10, 11, 44, 49, 53, 88, 99, 115] and
relational [12, 42, 72, 87, 125] systems.
Basic Structure. LSM-trees store data in form of key-value pairs,
where a key refers to a unique object identifier, and the data asso-
ciated with it, is referred to as value. When storing schema-based
relational data, the primary key of a relation acts as the key, and
the remaining attributes together constitute the value. The entries
in an LSM-tree are typically sorted and accessed based on the key.

LSM Components. LSM-trees were conceptualized to have a hier-
archical data layout with one tree-like component in memory and
a larger second component on disk [93]. Typically, for an LSM-tree
with L levels, the first level (Level 0) is retained in memory and
the remaining levels (Level 1 to L − 1) are disk-resident [33]. The
data in the in-memory structure is moved to the disk-component
iteratively through a process of data layout re-organization.

2.1.1 Operating Principles. Below, we present the key operating
principles of LSM-based storage engines.
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A. Batched Ingestion. Incoming inserts, updates, or deletes are
first buffered within the in-memory component of an LSM-tree.
Once the buffer reaches capacity, the entries are sorted by the key
and are moved to the first tree-level (Level 0) on disk. Batching
writes in memory (i) enables high throughput for writes, while (ii)
facilitating fast lookups for workloads with temporality.
B. Out-of-Place Updates and Deletes. LSM-trees follow the out-
of-place paradigm by design. Updates and deletes are handled as
new inserts, and are applied lazily to the base data. This allows
for high write throughput, as unlike in-place read-modify-writes,
out-of-place updates and deletes do not incur write-stalls.
C. Immutable File Structure. On disk, LSM-trees maintain the
data in immutable sorted files. This means, modifications to an entry
entails re-writing of the corresponding file anew, with the older file
beingmarked for garbage collection. Immutable file structure allows
LSM-tree to achieve high disk space utilization, as within a file,
entries are written compactly without any free space maintained.
D. Periodic Data Layout Re-Organization. Each level on disk is
assigned a capacity which typically grows exponentially with the
levels. When a level reaches capacity, all or part of its data is sort-
mergedwith data from the next level with an overlapping key-range.
This process of data layout re-organization is called compaction.
Compactions (i) bound the number of sorted components or runs
on disk, thereby, facilitating fast lookups, while (ii) reducing space
amplification through periodic garbage collection.
E. LSM Invariant. A key property is that the contents of a Level i
are more recent than the contents of the deeper, larger Level i + 1.

2.1.2 Basic Operations. We classify the basic LSM-operations into
two classes: (i) internal operations and (ii) external operations.

Internal operations refer to the operations triggered by a storage
engine in order to re-structure the data layout: (i) flushing the
memory buffer to disk, and (ii) compacting the sorted runs on disk.
Flush. Every time the memory buffer reaches capacity, a new buffer
is created to receive the next batch of inserts, to avoid write stalls.
Entries in the older buffer are sorted on the key, and are written to
disk as an immutable file. This process is called flushing [83].
Compaction. Every time a level has an incoming immutable file
(note that flushing creates incoming immutable files for Level 1) the
LSM-tree checks whether the current level goes beyond its capacity.
If this is the case, all or part of the data from that level is moved to
the next level. As data in different levels can be overlapping in the
key domain, the participating entries are merged, retaining only the
latest version of each key. This process, termed compaction, limits
the number of sorted runs in a tree, and in the process, garbage
collects logically invalidated entries [39, 83].
Compaction Policies. Classically, LSM-trees support two compaction
policies: leveling and tiering [111, 113]. In leveling, each level may
have at most one run, and every time a run in Level i − 1 (i ≥ 1) is
moved to Level i , it is greedily merged with the run from Level i , if
it exists. With tiering, every level must accumulate multiple runs
before they are merged. In §2.2, we discuss state-of-the-art hybrid
compaction strategies and their performance implications.

External operations refer to the operations that are triggered by
an application. The fundamental external operations supported by
LSM-based key-value stores are puts, gets, scans, and deletes.

Put. LSM-trees ingest data in an out-of-place manner; thus, updates
are treated similarly to inserts. Incoming entries are first put into
the memory buffer, before being moved to disk in an opportunistic
way. Update to a key that exists in the buffer, immediately replaces
the older entry in place; otherwise, the update is propagated to the
disk and is lazily applied to the logically invalidated target data.
Get. A get or point lookup returns the most recent version of an
entry of the desired key. A point lookup begins at the memory
buffer and traverses the tree from the smallest disk-level to the
largest one. For tiering, within a level, a lookup moves from the
most to the least recent tier. The lookup terminates when it finds
the first matching entry, as the LSM-invariant ensures that the latest
version of an entry is always retained in the youngest sorted run
containing an entry with a matching key.
Scan. A range lookup or scan returns the most recent versions of all
keys within a range. To facilitate range queries, all sorted runs in an
LSM-tree are scanned, and merged, while returning only the latest
version for each key. Typically, during range lookups, an iterator is
assigned for each run, and the runs are scanned in parallel.
Delete. LSM-trees realize deletes logically by inserting a special
type of entry called a tombstone. A tombstone contains the key to
be deleted, and its short (typically, only a byte-long) value field is
used to distinguish it from regular key-value entries. The logically
invalidated entries are garbage collected only after they are com-
pacted with a matching tombstone. Before this, both the invalidate
entries and the tombstone co-exist in different files of the database.

2.1.3 Optimizing Reads. The write-optimized design of LSM-trees
leads to suboptimal read performance. To ameliorate this, state-
of-the-art LSM-engines employ several in-memory light-weight
auxiliary data structures, such as filters, indexes, and block caches.
Indexing and Block-basedCaching.Without help from any aux-
iliary data structures, LSM-trees would perform several superfluous
disk I/Os for every lookup. Thus, virtually any LSM-tree design is
supported by fence pointers (a special form of Zonemaps [89]),
that store information about the smallest and largest keys in ev-
ery disk page [39]. Such light-weight data structures are typically
pre-fetched to memory in an opportunistic way. To further im-
prove the performance of in-memory key search [126], several
advanced indexing techniques have been proposed in the litera-
ture [5, 24, 30, 47, 66, 69]. Several approaches have also focussed
on optimizing reads on secondary (non-key) attributes through
secondary indexing techniques [64, 80, 86, 97, 117, 118, 136].

Another way of improving lookup performance is by using
block-level caching [105]. Commercial LSM engines use a block
cache (which, for example, defaults at 12GB for RocksDB) that can
be configured to retain in memory the first few levels of a tree, the
frequently accessed hot data blocks, and/or even the filter and index
blocks [39]. Since, compactions involve a lot of data movement, it is
rather frequent that the hot data pages are evicted from block cache
during compactions [119]. To address this problem and retain hot
pages in memory, Leaper introduces an ML-aided predictive mecha-
nism to identify pages from recently compacted files and prefetch
those in block cache immediately after compaction [128].
Point Query Filters. In the worst-case, even in presence of fence
pointers, a point lookup may need to probe every sorted run in a
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tree [39, 83], leading to superfluous I/Os. Thus, to further reduce
the cost of point lookups, state-of-the-art LSM-engines maintain
Bloom filters in memory [44]. Bloom filters are maintained at the
granularity of sorted runs, and allow a lookup to skip probing a
run altogether, if the filter-lookup returns negative [39]. Dayan
et al. optimizes the memory allocation to filters of different
tree-levels to minimize the expected number I/O cost for point
lookups [31, 32]. Several new filter designs and LSM-specific fil-
ter optimization techniques have been proposed, including Elas-
ticBF [76] that addresses access skew by employingmultiple small
filter units per Bloomfilter. Ribbon filter [37] introduces a better
tradeoff of index time vs. space utilization at the expense of
additional CPU work. Chucky [35] builds a cuckoo filter-based
single updatable index that serves as both a filter and an index,
while the hash sharing [137] technique re-uses the same hash-
digest across levels during lookups, to reduce the overall CPU cost.
Note that other approximate set membership data structures can
also be potentially useful as Bloom filter replacements [18, 27, 45].
Range Query Filters. LSMs are by design not optimized for range
queries as data within a given range can be scattered across all levels
of a tree. Therefore, range filters are crucial to prevent unnecessary
disk access while executing range queries on LSMs [84, 103, 131,
132]. The study of range filters on LSMs can be broadly divided into
two parts: optimizing for long and short range queries. Prefix filters
use fixed-length key-prefixes to answer long range membership
queries [103]. SuRF [131, 132] is a succinct trie-based filter that
supports storing variable length prefixes of keys, thus, allowing
fewer false positives for long range queries. Rosetta [84] introduces
a range filter comprising of a hierarchy of Bloom filters that
can logically construct a segment tree to detect differences in longer
prefixes, which is a better fit for short range queries.
OptimizingMemoryAllocation.Thememory allocation between
the buffer and the filters can be tuned tomaximize read performance.
Monkey [31] points out that as the number of entries grows ex-
ponentially with levels, the cost of data movement due to false
positives becomes higher in shallower levels. Monkey proposes an
optimal memory allocation strategy (i) across the Bloom filters
within a tree and (ii) between the buffer and the filters to navigate
the RUM tradeoff space. Chucky [35] discusses the same with vari-
able hash bucket sizes for succinct cuckoo filters on LSMs. More
research results on balancing both read and write performance by
allocating memory appropriately are discussed in the next module.

2.2 Module II: Optimizing Writes
The high ingestion throughput offered by LSM-trees comes at the
cost of increased write amplification [20]. There have been several
lines of work that aim to improve the overall ingestion performance
by (i) buffer-level modifications, (ii) changing the data layout, (iii)
tuning the compaction algorithms, and/or (iv) increasing paral-
lelism. In this module, we present an account of such endeavors
that improve ingestion performance in LSM-based storage engines.

2.2.1 In-Memory Optimizations. Varying the number of buffer
components in memory allows for accumulation of more entries
before flushing is required. This allows LSM-engines to withstand
heavy bursts of ingestion without hurting the tail write latency [42,
44, 49]. In addition, many LSM-engines also allow developers to

change the buffer size to ameliorate write stalls and improve
ingestion throughput [11, 24, 44, 53, 114, 125].

Another design optimization adopted in commercial engines
varies the implementation of the buffer based on the workload
and performance requirement. For example, RocksDB allows devel-
opers to implement the memory buffer as a (i) vector, (ii) skiplist, (iii)
hash-skiplist, or (iv) hash-linkedlist [43], each of which offers very
different performance. A vector implementation offers the highest
ingestion throughput for write-only workloads; however, its perfor-
mance degrades in presence of interleaved reads. A skip-list buffer
offers better performance for such mixed workloads.

2.2.2 Disk Data Layouts. To avoid merging the buffer components
with the runs on disk after every flush, a tiered variant of the LSM
was introduced by Apache Cassandra [11]. The tiered design, with
multiple sorted runs with overlapping key-ranges in a level, reduces
data movement due to compactions. This allows for (i) faster data
ingestion and (ii) reduced write amplification; but, comes at the cost
of (iii) increased query cost and (iv) increased space amplification,
as the tiered design has more sorted runs overall [10, 11, 22, 104,
113, 114]. Recent research has proposed a new set of hybrid data
layouts where the shallower level(s) have a tiered layout and the
larger and lower levels have a leveled layout [33, 56, 102, 127].
By default, RocksDB has tiering in the first level and leveling in
the rest, as this allows for withstanding bursts of ingestion [102].
Dostoevsky introduces an LSM-structure where only the last level
is leveled, with all the intermediate levels as tiered [33].

Reducing disk accesses, and in turn, data movement from disk,
has also been a key line of research that aims to reduce write am-
plification [30, 57, 78]. WiscKey introduces an SSD-conscious data
layout by decoupling the storage of keys from values [78]. The
LSM-tree simply stores the keys along with pointers to the values,
while the values are stored in a separate log file. This significantly
reduces (4×) write amplification during ingestion, while facilitating
up to 100× faster data loading. Idreos et al. introduced a contin-
uum of storage layouts, which includes access frequency-based
hybrid index structures with LSM-based indexes created on the
hot data and B-tree based indexes on colder, larger levels [57].

Another way to reduce data movement is by partitioning the
key space and storing the partitions in separate trees [98]. Peb-
blesDB proposes to partition the key domain and introduces a
fragmented LSM-structure that improves the ingestion throughput
by reducing the overall data movement during compactions [54, 81,
91, 98]. Nova-LSM uses a similar partitioning algorithm to shard
the data across multiple storage components in a distributed
framework, thereby, reducing superfluous data movement [54].

2.2.3 Tuning Compactions. While some LSM-engines, such as As-
terixDB [6, 7], compact all data in a level during compactions, such
strategies entail heavy bursts of disk I/Os periodically, causing
prolonged, undesired write stalls. Thus, many state-of-the-art LSM-
engines have adopted a partial compaction strategy, where data
is stored in multiple files within a level [44, 49, 53, 112]. During
compactions, one (or few) file is compacted at a time, amortizing
the I/O cost for compactions by reducing data movement [113].

For systems with partial compaction, the design decision on
which file(s) to compact affects ingestion performance [19, 21].
Performing compactions at a smaller granularity allows for picking
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files with the least overlap with the next level for compaction [38,
71]. For delete-intensive workloads [23], picking files with the high-
est density of tombstones purges the logically invalidated entries
early, thus, reducing write amplification [40, 41, 71, 113].

Among system-specific solutions to improve ingestion perfor-
mance, LSM-based systems allow developers to assign writes a
higher priority than compactions. This prevents write stalls to
some degree; however, accumulating buffers without flushing them
and sorted runs without compacting them, violates the LSM data
layout, and would incur bursts of disk I/Os in the future, causing
latency spikes [100]. To prevent write stalls, some LSM engines per-
form compactions using background threads [44, 125]. Back-
ground compactions are useful for I/O intensive scenarios; how-
ever, this is a highly system-aware operation, and enabling it with-
out due analysis may cause slow down. Balmau et al. introduced a
bandwidth scheduler to avoid inference between flush and
compaction, thereby, preventing write stalls [16, 17].

2.2.4 The LSM Compaction Design Space. In prior work, we high-
light that compactions affect the performance of LSM-engines in
terms of ingestion, point and range lookups, space and write ampli-
fication, and deletes [113]. Toward this, we introduce a set of first-
order compaction primitives: (i) the compaction trigger, (ii) the
data layout, (iii) the compaction granularity, and (iv) the data move-
ment policy. These primitives formally define any existing or com-
pletely new compaction strategies. We will summarize the experi-
mental evaluation of multiple compaction strategies to provide key
insights about (i) the effects of the compaction primitives, (ii) the im-
pact of workload composition and distribution on compactions, and
(iii) the impact of LSM tuning on compactions. Other efforts on com-
paction performance optimization include grouped compaction
strategies [133], light-weight compaction policies [129, 130], and
delayed opportunistic compaction strategies [95].

2.2.5 Increasing Parallelism. Finally, with the emergence of new
storage devices and multi-core systems, several efforts have aimed
to exploit newer, faster storage and compute architectures to make
LSMs better. Several systems allow for multi-threaded flushes
and compactions to accelerate ingestion [43, 70, 107, 124]. Parti-
tioning and sharding-based solutions also take advantage to intra-
node and inter-node operational parallelism to enhance perfor-
mance. LSM-designs tuned for SSD/NVM devices achieve superior
ingestion performance by batchingwrites and performing com-
pactions opportunistically [28, 61, 74, 75, 120–122, 134, 135].

2.2.6 Other Endeavors. Chandramouli et al. introduces FASTER,
a log-structured storage, that improves the read-modify-write per-
formance [24]. Along with a log-structured storage, FASTER main-
tains an in-memory hash table that maps keys to disk blocks.
FASTER achieves significantly better read performance at the price
of a higher memory footprint and a higher cost for range queries.
State-of-the-art systems also support read-modify-write operations,
which are particularly useful for stream processing use cases [106].

2.3 Module III: LSM Tuning and Navigating the
LSM Design Space

The RUM conjecture highlights the inherent three-way tradeoff
constructed by the Read cost, the Update cost, and the Memory

footprint [13, 14]. Any given design presents a navigable tradeoff
in terms of the RUM costs, which can be tuned to best match the
expected workload to get the optimal performance of the specific de-
sign. Commercial LSM-engines expose hundreds of tuning knobs to
the developers, and together, these variable components constitute
the LSM design space. Navigating the LSM design space is criti-
cal; however, the vastness of this design space makes this process
complex and extremely difficult. Toward this, recent approaches
have attempted to break down the LSM black box to understand
the implications of the different LSM components, operations, and
tuning knobs on performance. This module presents an account of
such efforts along with a discussion on open research challenges.

2.3.1 Navigating the Read-Write Tradeoff. The notion of breaking
data structure designs into first-order primitives was first introduced
in Data Calculator [58, 59], and this has been pivotal in exploration
of the LSM-tree design space. Dayan et al. identified that allocation
of main memory plays a critical role on LSM performance, and
that, by design, LSM-trees suboptimally co-tune the data layout,
the memory buffer size, and the filter memory size [32]. The work
introduces a workload-aware main memory allocation tech-
nique that determines the optimal main memory size and filter size
for different tree-levels based on the proportion of ingestion, and
empty and non-empty point lookups. By doing so, this work moves
the read-write tradeoff curve closer to the Pareto optimal.

The work on the design continuum [57] outlines a larger design
space for LSMs by exploring different design elements, in terms
of (i) the disk data layout, (ii) the data access patterns, and (iii)
main memory allocation. Luo et al. proposes to optimally allocate
memory between the memory buffer and the block cache to
improve query performance [79, 82]. LSM-Bush puts everything
together and introduces a continuum for data layouts, where
an LSM-tree can be configured to have an arbitrary number of
sorted runs in each level [34]. Finally, Cosine breaks away from
worst-case based cost modeling and proposes (i) distribution-aware
I/O models and (ii) learning-based concurrency models facilitating
accurate navigation of the LSM design space [26].

2.3.2 Robust LSM Designs. Navigating the read-write tradeoff to
tune LSM-trees allows to achieve the best possible performance
for a given workload. This approach has been utilized repeatedly
in the research discussed in Sections 2.2, and 2.3.1. However, the
advent of new volatile applications and the increasing adoption of
shared infrastructure (e.g., private or public clouds), add a degree of
uncertainty between the expected and the observed workloads. To
address this, recent research proposed a robust LSM tuning that
formulates the tuning problem as a min-max problem, where the
goal is to minimize the worst-case performance in a neighborhood of
the expected workload [55]. In addition to robust tuning, stable per-
formance depends also on the implementation of compaction. Luo
et al. [81] proposed a throttling mechanism for compactions
to guarantee that the merging devices operate just at the point
prior to saturation. This leads to predictably stable performance,
alleviating the instability due to overloading underlying storage.

2.3.3 Privacy-Aware LSMDesigns. Next, we discuss the importance
of designing privacy-aware data systems with an emphasis on LSM-
engines. Similarly to other out-of-place systems, LSM-trees realize
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deletes through logical invalidation, and this has critical implica-
tions on data privacy. Lethe [112] introduces a new family of com-
paction strategies that persistently delete logically invalidated
data objects within a threshold duration; thereby, complying
with the legal regulations for timely data deletion [1–4, 15, 108, 109].
For workloads with unique inserts only, practical systems provide
an API for single deletes, which removes a tombstone after it is
compacted with the first matching key [101]. While some systems
also support range delete operations, current implementations fail
to provide latency bounds on persistent data deletion [85].

2.3.4 Open Challenges. In the final part of the tutorial, we present
the opportunities and open challenges in LSM research.

(1) Reducing write amplification. Despite recent efforts, LSM designs
continue to suffer from high write amplification. Optimizing
write amplification without breaking the notion of immutability,
remains a key goal.

(2) Workload-aware compaction. Identifying optimal compaction
strategies based on workload and LSM-tuning is an open re-
search problem. A first step toward this would involve extensive
workload-aware modeling for each compaction primitive.

(3) Data layout transformation. Another interesting research av-
enue involves on-line data layout transformation subject to
workload changes. This encapsulates the key intuitions of ro-
bust LSM tuning and hybrid LSM data layouts.

(4) Performance predictability. Reducing the duration and the vari-
ance of write-stalls when flushing is also a key goal.

(5) Privacy-aware LSMs. Similarly to deletes, LSM-trees realize up-
dates through logical invalidation. Persistent and timely purg-
ing entries invalidated by updates is an open challenge, es-
pecially as it is hard to differentiate them from (new) inserts.
Further, supporting timely and persistent deletes on secondary
attributes is hard in LSM engines, particularly for point sec-
ondary deletes [15, 108].

3 TARGET AUDIENCE
This tutorial will offer an in-depth presentation of the log-structured
merge (LSM) design paradigm along with the extensive recent re-
search on how to optimize it. The target audience includes graduate
students that aspire to do research on the topic of LSM-based sys-
tems (NoSQL, relational, spatial, or others), database researchers
that want to quickly dive in the details of the LSM architecture, and
practitioners that want to have a detailed summary of the state-
of-the-art results on LSM. The audience will also be exposed to
current challenges and open questions on LSM systems.

4 RELATEDWORK
Prior tutorials on storage engine designs primarily focussed on
expressing the key design principles and optimization techniques
adopted in modern NoSQL and key-value systems [13, 56, 57, 94].
Athanassoulis and Idreos presented a tutorial that focussed on iden-
tifying and defining the intrinsic three-way tradeoff constructed by
the Read cost, the Update cost, and theMemory footprint [13]. Ev-
ery state-of-the-art NoSQL, NewSQL, relational, and non-relational
data system is bound by the RUM tradeoff, which in turn, helps

in construction of the design space of data structures for LSM en-
gines. Özcan et al. explored this tradeoff from the perspective of
the fundamental architectural properties of modern hybrid transac-
tional/analytical processing (HTAP) systems [94]. Idreos and Kraska
presented a tutorial outlining the design trends and recent research
advancements in auto-tuning and self-designing data systems from
the perspective of data structures, algorithms, and query optimiza-
tion [57]. Another recent tutorial by Idreos and Callaghan discusses
the core design principles and components of modern key-value
storage engines [56]. In contrast, in this tutorial, we specifically
focus on LSM-trees, one of the most commonly used data structures
in modern data stores, and dissect their principles, design goals,
and optimization techniques. To the best of our knowledge, this is
the first tutorial that focusses on deconstructing the log-structured
merge paradigm and analyzing the LSM design space to provide
useful insights for researchers and practitioners.
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a postdoctoral researcher at INRIA, Rennes (France). He completed
his PhD from Indian Institute of Technology (IIT) Kharagpur. Sub-
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